Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Genomic ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation Genomic and Precision Medicine
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Partitioning the Pleiotropy Between Coronary Artery Disease and Body Mass Index Reveals the Importance of Low Frequency Variants and Central Nervous System–Specific Functional Elements

Authors: Adam W. Turner; Majid Nikpay; Ruth McPherson;

Partitioning the Pleiotropy Between Coronary Artery Disease and Body Mass Index Reveals the Importance of Low Frequency Variants and Central Nervous System–Specific Functional Elements

Abstract

Background: The objective of this study is to investigate the extent and nature of pleiotropy between coronary artery disease (CAD) and body mass index (BMI). Methods: We examined the contribution of genome-wide single-nucleotide polymorphisms (minor allele frequency ≥0.01) to co-occurrence of CAD and BMI in a sample of genetically unrelated 8041 subjects (genetic resemblance ≤0.025) of European ancestry using mixed-linear-models. We further partitioned the estimated pleiotropy according to biological features to gain insight into the nature of pleiotropy between CAD and BMI. Results: We found significant ( P <0.0001) positive genetic correlation between CAD and BMI ( r g =0.60). The estimated pleiotropy explained 68% of phenotypic correlation, and it was not proportionally distributed across the chromosomes; notably, chromosome 10 contributed more; whereas, chromosomes 11 and 14 contributed less to pleiotropy than expected given their chromosomal length. We noted that a large proportion (63%; P =0.002) of the pleiotropy is attributed to single-nucleotide polymorphisms with low allele frequency (minor allele frequency <0.05). Of note, pleiotropy was enriched among central nervous system genes and genes of metabolic pathways. Further analyses revealed that these effects are more pronounced in the proopiomelanocortin pathway and genes involved in carbohydrate metabolism. After genome-wide association study meta-analysis, only single-nucleotide polymorphisms downstream of the MC4R gene were found concordantly associated with ( P <5×10 –8 ) BMI and CAD with lead single-nucleotide polymorphism being rs663129 (combined P =2.7×10 –65 ). Finally, partitioning the pleiotropy according to functional elements pointed to the importance of superenhancers and notably brain-specific superenhancers. Conclusions: Genome-wide pleiotropy substantially contributes to co-occurrence of CAD and obesity, and it is highly enriched among low frequency variants and central nervous system–specific functional elements.

Related Organizations
Keywords

Genetic Pleiotropy, Coronary Artery Disease, Polymorphism, Single Nucleotide, Body Mass Index, Gene Frequency, Humans, Genetic Predisposition to Disease, Genome-Wide Association Study

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
bronze