Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Retrograde Response and Other Pathways of Interorganelle Communication in Yeast Replicative Aging

Authors: S. Michal Jazwinski;

The Retrograde Response and Other Pathways of Interorganelle Communication in Yeast Replicative Aging

Abstract

A form of mitochondria-to-nucleus signaling mitochondria-to-nucleus signaling is known to play a role in determining replicative life span in yeast. This retrograde response is triggered by experimentally-induced mitochondrial dysfunction mitochondrial dysfunction, but it also is activated during the course of normal replicative aging, allowing yeast to have as long a replicative life span as they do. The components of the retrograde signaling pathway participate in diverse cellular processes such as mitophagy, which appear to be involved in mitochondrial quality control mitochondrial quality control. This plethora of mitochondrial surveillance mitochondrial surveillance mechanisms points to the central importance of this organelle organelle in yeast replicative aging. Additional pathways pathways that monitor mitochondrial status mitochondrial status that do not apparently involve the retrograde response machinery also play a role. A unifying theme is the involvement of the target of rapamycin target of rapamycin (TOR) in both these additional pathways and in the retrograde response. The involvement of TOR brings another large family of signaling events into juxtaposition. Ceramide synthesis is regulated by TOR opening up the potential for coordination of mitochondrial status with a wide array of additional cellular processes. The retrograde response lies at the nexus of metabolic regulation metabolic regulation, stress resistance stress resistance, chromatin-dependent gene regulation chromatin-dependent gene regulation, and genome stability genome stability. In its metabolic outputs, it is related to calorie restriction,calorie restriction, which may be the result of the involvement of TOR. Retrograde response-like processes have been identified in systems other than yeast, including mammalian cells mammalian cells. The retrograde response is a prototypical pathway of interorganelle communication. Other such phenomena are emerging, such as the cross-talk cross-talk between mitochondria mitochondria and the vacuole vacuole, which involves components of the retrograde signaling pathway. The impact of these varied physiological responses on yeast replicative aging remains to be assessed.

Related Organizations
Keywords

Cell Nucleus, Aging, Time Factors, Longevity, Chromatin Assembly and Disassembly, Mitochondria, Gene Expression Regulation, Fungal, Yeasts, Energy Metabolism, Cell Division, Caloric Restriction, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?