Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Multiple Sclerosis J...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of multiple candidate genes in association with phenotypes of multiple sclerosis

Authors: Sombekke, M.H.; Arteta, D.; van de Wiel, M.A.; Crusius, J.B.A.; Tejedor, D.; Killestein, J.; Martinez, A; +3 Authors

Analysis of multiple candidate genes in association with phenotypes of multiple sclerosis

Abstract

Multiple sclerosis is a heterogeneous neurological disease with varying degrees of severity. The common hypothesis is that susceptibility to multiple sclerosis and its phenotype are caused by a combination of environmental and genetic factors. The genetic part exerts its effect through several genes, each having modest effects. We evaluated whether disease severity could be predicted by a model based on clinical data and data from a DNA chip. The DNA chip was designed containing several single nucleotide polymorphisms in 44 genes, previously described to be associated with multiple sclerosis. A total of 605 patients with multiple sclerosis were included in this analysis, using gender, onset type and age at onset as clinical covariates. We correlated 80 single nucleotide polymorphisms to the degree of disease severity using the following three outcome measures: linear Multiple Sclerosis Severity Score, dichotomous Multiple Sclerosis Severity Score (using a cut-off point of 2.5) and time to reach Expanded Disability Status Scale score 6. Sixty-nine single nucleotide polymorphisms were included in the analysis. No individual single nucleotide polymorphism showed a significant association; however, a combination of single nucleotide polymorphisms significantly improved the prediction of disease severity in addition to the clinical variables. In all three models the Interleukin 2 gene was included, confirming a previously reported modest effect on disease severity. The highest power was obtained using the dichotomized Multiple Sclerosis Severity Score as outcome. Several single nucleotide polymorphisms showed their added predictive value over the clinical data in the predictive models. These results support our hypothesis that disease severity is determined by clinical variables and genetic influences (through several genes with small effects) in concert.

Keywords

Adult, Male, Chi-Square Distribution, Multiple Sclerosis, Genotype, Middle Aged, Polymorphism, Single Nucleotide, Severity of Illness Index, Phenotype, Area Under Curve, Humans, Female, Genetic Predisposition to Disease, Age of Onset, Genetic Association Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!