Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advances in Differen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Difference Equations
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Difference Equations
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Difference Equations
Article . 2020
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2020
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Blow-up phenomena for a viscoelastic wave equation with strong damping and logarithmic nonlinearity

Authors: Tae Gab Ha; Sun-Hye Park;

Blow-up phenomena for a viscoelastic wave equation with strong damping and logarithmic nonlinearity

Abstract

AbstractIn this paper we consider the initial boundary value problem for a viscoelastic wave equation with strong damping and logarithmic nonlinearity of the form $$ u_{tt}(x,t) - \Delta u (x,t) + \int ^{t}_{0} g(t-s) \Delta u(x,s)\,ds - \Delta u_{t} (x,t) = \bigl\vert u(x,t) \bigr\vert ^{p-2} u(x,t) \ln \bigl\vert u(x,t) \bigr\vert $$utt(x,t)−Δu(x,t)+∫0tg(t−s)Δu(x,s)ds−Δut(x,t)=|u(x,t)|p−2u(x,t)ln|u(x,t)| in a bounded domain $\varOmega \subset {\mathbb{R}}^{n} $Ω⊂Rn, where g is a nonincreasing positive function. Firstly, we prove the existence and uniqueness of local weak solutions by using Faedo–Galerkin’s method and contraction mapping principle. Then we establish a finite time blow-up result for the solution with positive initial energy as well as nonpositive initial energy.

Related Organizations
Keywords

viscoelastic wave equation, finite time blow-up, Asymptotic behavior of solutions to PDEs, Finite time blow-up, Local existence, Logarithmic nonlinearity, Blow-up in context of PDEs, Second-order semilinear hyperbolic equations, QA1-939, Viscoelastic wave equation, Initial-boundary value problems for second-order hyperbolic equations, logarithmic nonlinearity, Mathematics, local existence, Second-order nonlinear hyperbolic equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
gold