Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Microbial Ecologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Microbial Ecology
Article . 2016 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Microbial Ecology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2016
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Microbial Ecology
Article
License: CC BY
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enrichment of Cryoconite Hole Anaerobes: Implications for the Subglacial Microbiome

Authors: Zdanowski, Marek K.; Bogdanowicz, Albert; Gawor, Jan; Gromadka, Robert; Wolicka, Dorota; Grzesiak, Jakub;

Enrichment of Cryoconite Hole Anaerobes: Implications for the Subglacial Microbiome

Abstract

Glaciers have recently been recognized as ecosystems comprised of several distinct habitats: a sunlit and oxygenated glacial surface, glacial ice, and a dark, mostly anoxic glacial bed. Surface meltwaters annually flood the subglacial sediments by means of drainage channels. Glacial surfaces host aquatic microhabitats called cryoconite holes, regarded as "hot spots" of microbial abundance and activity, largely contributing to the meltwaters' bacterial diversity. This study presents an investigation of cryoconite hole anaerobes and discusses their possible impact on subglacial microbial communities, combining 16S rRNA gene fragment amplicon sequencing and the traditional enrichment culture technique. Cryoconite hole sediment harbored bacteria belonging mainly to the Proteobacteria (21%), Bacteroidetes (16%), Actinobacteria (14%), and Planctomycetes (6%) phyla. An 8-week incubation of those sediments in Postgate C medium for sulfate reducers in airtight bottles, emulating subglacial conditions, eliminated a great majority of dominant taxa, leading to enrichment of the Firmicutes (62%), Proteobacteria (14%), and Bacteroidetes (13%), which consisted of anaerobic genera like Clostridium, Psychrosinus, Paludibacter, and Acetobacterium. Enrichment of Pseudomonas spp. also occurred, suggesting it played a role as a dominant oxygen scavenger, providing a possible scenario for anaerobic niche establishment in subglacial habitats. To our knowledge, this is the first paper to provide insight into the diversity of the anaerobic part of the cryoconite hole microbial community and its potential to contribute to matter turnover in anoxic, subglacial sites.

Keywords

Geologic Sediments, Ecology, Base Sequence, Bacteroidetes, Soil Science, High-Throughput Nucleotide Sequencing, Fresh Water, Actinobacteria, Bacteria, Anaerobic, Planctomycetales, RNA, Ribosomal, 16S, Proteobacteria, Environmental Microbiology, Ice Cover, Anaerobiosis, Ecology, Evolution, Behavior and Systematics, Ecosystem

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
Green
hybrid