
pmid: 11762167
Plant development depends upon the control of growth, organization and differentiation of cells derived from shoot and root meristems. Among the genes involved in flower organ determination, the cadastral gene SUPERMAN controls the boundary between whorls 3 and 4 and the growth of the adaxial outer ovule integument by down-regulating cell divisions. To determine the precise function of this gene we overexpressed ectopically the Arabidopsis thaliana (L.) Heynh. SUPERMAN gene in tobacco (Nicotiana tabacum L.). The transgenic plants exhibited a dwarf phenotype. Histologically and cytologically detailed analyses showed that dwarfism is correlated with a reduction in cell number, which is in agreement with the SUPERMAN function in Arabidopsis. Furthermore, a reduction in cell expansion and an impairment of cell differentiation were observed in tobacco organs. These traits were observed in differentiated vegetative and floral organs but not in meristem structures. A potential effect of the SUPERMAN transcription factor in the control of gibberellin biosynthesis is discussed.
Nicotiana, Plant Stems, Arabidopsis Proteins, Arabidopsis, Cell Differentiation, Plants, Genetically Modified, Gibberellins, Mixed Function Oxygenases, Plant Leaves, Phenotype, Gene Expression Regulation, Plant, Cell Division, Plant Proteins, Transcription Factors
Nicotiana, Plant Stems, Arabidopsis Proteins, Arabidopsis, Cell Differentiation, Plants, Genetically Modified, Gibberellins, Mixed Function Oxygenases, Plant Leaves, Phenotype, Gene Expression Regulation, Plant, Cell Division, Plant Proteins, Transcription Factors
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 40 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
