Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A mid/low-temperature solar-driven integrated membrane reactor for the dehydrogenation of propane – A thermodynamic assessment

Authors: Rongjie He; Yipu Wang; Hongsheng Wang; Sean-Thomas B. Lundin; Bingzheng Wang; Hui Kong; Xiaofei Lu; +2 Authors

A mid/low-temperature solar-driven integrated membrane reactor for the dehydrogenation of propane – A thermodynamic assessment

Abstract

Abstract Solar thermochemical conversion is an effective method for solar energy storage, and propane dehydrogenation is one popular technology to generate propylene and hydrogen, while the high temperature required in the reaction limits its efficiency and utilization. In this research, a solar–driven hydrogen permeation membrane reactor system for propane dehydrogenation is proposed for efficiently generating pure hydrogen and propylene in a mild temperature range, which can decrease the heat loss and increase the conversion rate, thereby converting low–grade solar thermal energy into high–grade chemical energy. Using the method of numerical simulation, the thermodynamic, kinetic, and environmental performances of the system are analyzed at different temperatures (250–500 °C) and H2 permeate pressures (10–5–10–2 bar). The C3H8 conversion rate, C3H6 selectivity, and C3H6 yield can achieve 99.2%, 99.1%, and 98.3% at 400 °C, 10–5 bar with the assistance of hydrogen separation. The first–law thermodynamic efficiency, solar–to–fuel efficiency, and exergy efficiency of the system are calculated to be 93.1%, 33.6%, and 73.4% (400 °C, 10–4 bar), respectively. The annual standard coal savings and carbon dioxide reduction rates are calculated to be 279.8 kg/(m2·year) and 685.5 kg/(m2·year) (400 °C, 10–5 bar). This study demonstrates the feasibility of a solar collector integrated with a membrane reactor for efficient solar energy storage via C3H8 dehydrogenation and provides guidance for further experimental research.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!