Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamical Analysis of Discrete-Time Two-Predators One-Prey Lotka–Volterra Model

Authors: Abdul Khaliq; Tarek F. Ibrahim; Abeer M. Alotaibi; Muhammad Shoaib; Mohammed Abd El-Moneam;

Dynamical Analysis of Discrete-Time Two-Predators One-Prey Lotka–Volterra Model

Abstract

This research manifesto has a comprehensive discussion of the global dynamics of an achievable discrete-time two predators and one prey Lotka–Volterra model in three dimensions, i.e., in the space R3. In some assertive parametric circumstances, the discrete-time model has eight equilibrium points among which one is a special or unique positive equilibrium point. We have also investigated the local and global behavior of equilibrium points of an achievable three-dimensional discrete-time two predators and one prey Lotka–Volterra model. The conversion of a continuous-type model into its discrete counterpart model has been completed by adopting a dynamically consistent nonstandard difference scheme with the end goal that the equilibrium points are conserved in twin cases. The difficulty lies in how to find all fixed points O,P,Q,R,S,T,U,V and the Jacobian matrix and its characteristic polynomial at the unique positive fixed point. For that purpose, we use Mathematica software to find the equilibrium points and all of the Jacobian matrices at those equilibrium points. Moreover, we discuss boundedness conditions for every solution and prove the existence of a unique positive equilibrium point. We discuss the local stability of the obtained system about all of its equilibrium points. The discrete Lotka–Volterra model in three dimensions is given by system (3), where parameters α,β,γ,δ,ζ,η,μ,ε,υ,ρ,σ,ω∈R+ and initial conditions x0,y0,z0 are positive real numbers. Additionally, the rate of convergence of a solution that converges to a unique positive equilibrium point is discussed. To represent theoretical perceptions, some numerical debates are introduced, including phase portraits.

Keywords

fixed points; stability; predator-prey system; rate of convergence; global stability; boundedness; Lotka–Volterra model; three-species model, fixed points, QA1-939, predator-prey system, stability, boundedness, global stability, Mathematics, rate of convergence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
gold