Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://hpc.ac.upc.ed...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/dsd.20...
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ParaDIME: Parallel Distributed Infrastructure for Minimization of Energy

Authors: Santhosh Kumar Rethinagiri; Oscar Palomar; Anita Sobe; Thomas Knauth; Wojciech Barczynski; Gulay Yalcin; Yarco Hayduk; +6 Authors

ParaDIME: Parallel Distributed Infrastructure for Minimization of Energy

Abstract

Dramatic environmental and economic impact of the ever increasing power and energy consumption of modern computing devices in data centers is now a critical challenge. On one hand, designers use technology scaling as one of the methods to face the phenomenon called dark silicon (only segments of a chip function concurrently due to power restrictions). On the other hand, designers use extreme-scale systems such as teradevices to meet the performance needs of their applications which in turn increases the power consumption of the platform. In order to overcome these challenges, we need novel computing paradigms that address energy efficiency. One of the promising solutions is to incorporate parallel distributed methodologies at different abstraction levels. The FP7 project ParaDIME focuses on this objective to provide different distributed methodologies (software-hardware techniques) at different abstraction levels to attack the power-wall problem. In particular, the ParaDIME framework will utilize: circuit and architecture operation below safe voltage limits for drastic energy savings, specialized energy-aware computing accelerators, heterogeneous computing, energy-aware runtime, approximate computing and power-aware message passing. The major outcome of the project will be a processor architecture for a heterogeneous distributed system that utilizes future device characteristics for drastic energy savings. Wherever possible, ParaDIME will adopt multidisciplinary techniques, such as hardware support for message passing, runtime energy optimization utilizing new hardware energy performance counters, use of accelerators for error recovery from sub-safe voltage operation, and approximate computing through annotated code. Furthermore, we will establish and investigate the theoretical limits of energy savings at the device, circuit, architecture, runtime and programming model levels of the computing stack, as well as quantify the actual energy savings achieved by the ParaDIME approach for the complete computing stack with the real environment.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average