Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Journal
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of Arabidopsis whole‐genome microarrays and their application to the discovery of binding sites for the TGA2 transcription factor in salicylic acid‐treated plants

Authors: Christopher Johnson; Julia C. Redman; Françoise Thibaud-Nissen; Roland Green; Hank C. Wu; Christopher D. Town; Jonathan Arias; +1 Authors

Development of Arabidopsis whole‐genome microarrays and their application to the discovery of binding sites for the TGA2 transcription factor in salicylic acid‐treated plants

Abstract

SummaryWe have developed two long‐oligonucleotide microarrays for the analysis of genome features in Arabidopsis thaliana, in particular for the high‐throughput identification of transcription factor‐binding sites. The first platform contains 190 000 probes representing the 2‐kb regions upstream of all annotated genes at a density of seven probes per promoter. The second platform is divided into three chips, each of over 390 000 features, and represents the entire Arabidopsis genome at a density of one probe per 90 bases.Protein–DNA complexes resulting from the formaldehyde fixation of leaves of plants 2 h after exposure to 1 mm salicylic acid (SA) were immunoprecipitated using antibodies against the TGA2 transcription factor. After reversal of the cross‐links and amplification, the resulting ChIP sample was hybridized to both platforms. High signal ratios of the ChIP sample versus raw chromatin for clusters of neighboring probes provided evidence for 51 putative binding sites for TGA2, including the only previously confirmed site in the promoter of PR‐1 (At2g14610). Enrichment of several regions was confirmed by quantitative real‐time PCR. Motif search revealed that the palindromic octamer TGACGTCA was found in 55% of the enriched regions. Interestingly, 15 of the putative binding sites for TGA2 lie outside the presumptive promoter regions. The effect of the 2‐h SA treatment on gene expression was measured using Affymetrix ATH1 arrays, and SA‐induced genes were found to be significantly over‐represented among genes neighboring putative TGA2‐binding sites.

Keywords

Chromatin Immunoprecipitation, Arabidopsis Proteins, Gene Expression Profiling, Arabidopsis, Nuclear Proteins, Genes, Plant, Basic-Leucine Zipper Transcription Factors, Promoter Regions, Genetic, Salicylic Acid, Genome, Plant, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 10%
Top 10%
Top 1%
bronze