Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Immunology
Article . 2017 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interference of the T Cell and Antigen-Presenting Cell Costimulatory Pathway Using CTLA4-Ig (Abatacept) Prevents Staphylococcal Enterotoxin B Pathology

Authors: Sarah J C Whitfield; Chris Taylor; Jane E Risdall; Gareth D Griffiths; James T A Jones; E Diane Williamson; Sjoerd Rijpkema; +4 Authors

Interference of the T Cell and Antigen-Presenting Cell Costimulatory Pathway Using CTLA4-Ig (Abatacept) Prevents Staphylococcal Enterotoxin B Pathology

Abstract

Abstract Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that binds the receptors in the APC/T cell synapse and causes increased proliferation of T cells and a cytokine storm syndrome in vivo. Exposure to the toxin can be lethal and cause significant pathology in humans. The lack of effective therapies for SEB exposure remains an area of concern, particularly in scenarios of acute mass casualties. We hypothesized that blockade of the T cell costimulatory signal by the CTLA4-Ig synthetic protein (abatacept) could prevent SEB-dependent pathology. In this article, we demonstrate mice treated with a single dose of abatacept 8 h post SEB exposure had reduced pathology compared with control SEB-exposed mice. SEB-exposed mice showed significant reductions in body weight between days 4 and 9, whereas mice exposed to SEB and also treated with abatacept showed no weight loss for the duration of the study, suggesting therapeutic mitigation of SEB-induced morbidity. Histopathology and magnetic resonance imaging demonstrated that SEB mediated lung damage and edema, which were absent after treatment with abatacept. Analysis of plasma and lung tissues from SEB-exposed mice treated with abatacept demonstrated significantly lower levels of IL-6 and IFN-γ (p < 0.0001), which is likely to have resulted in less pathology. In addition, exposure of human and mouse PBMCs to SEB in vitro showed a significant reduction in levels of IL-2 (p < 0.0001) after treatment with abatacept, indicating that T cell proliferation is the main target for intervention. Our findings demonstrate that abatacept is a robust and potentially credible drug to prevent toxic effects from SEB exposure.

Country
United States
Keywords

Interleukin-6, T-Lymphocytes, Body Weight, Antigen-Presenting Cells, Staphylococcal Infections, Monocytes, Abatacept, Enterotoxins, Interferon-gamma, Mice, Animals, Cytokines, Humans, Interleukin-2, Lung

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
bronze