Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Atmospheric Sci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Atmospheric Science Journal
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MPG.PuRe
Article . 2008
Data sources: MPG.PuRe
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

What Balances the Decrease in Net Upward Thermal Radiation at the Surface in Climate Change Experiments?

Authors: von Storch, J. ; https://orcid.org/0000-0002-2308-6834; Botzet, M.; Ehlert, I.;

What Balances the Decrease in Net Upward Thermal Radiation at the Surface in Climate Change Experiments?

Abstract

The direct response of surface fluxes to an increase in green house gas concentration is a decrease in net upward long-wave radiation (NLW). This paper examines the responses of the other three surface fluxes, i.e. the latent heat flux (HL), the sensible heat flux (HS) and the net short wave radiation (NSW), using a set of IPCC AR4 climate experiments performed with the coupled ECHAM5/MPI-OM AO-GCM. In particular, the questions of whether and how these fluxes compensate the warming effect due to a decrease in upward NLW are studied. Consistent with the earlier studies, the decrease in upward NLW is strongly compensated by an increase in upward HL. By using the IPCC scenarios and a coupled AO-GCM, two new aspects of this compensation are identified. First, the degree of compensation decreases with the rate of increase in GHG concentration. Secondly, the compensation does not work over the North Atlantic, where the decrease in upward NLW develops parallel to a reduction in upward HL. This leads to large increases in the net downward heat flux over the North Atlantic and a reduction of the MOC. The responses in HS and NSW can further strengthen or suppress the warming effect of NLW, depending on geographical regions considered. There is a general tendency that HS changes in the same direction as NLW over sea, but in the opposite direction over land. For NSW, the response strengthens the NLW changes over land and suppresses the NLW changes over sea.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold