Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2009
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Haglund-Haiman-Loehr Type Formulas for Hall-Littlewood Polynomials of Type B and C

Authors: Lenart, Cristian;

Haglund-Haiman-Loehr Type Formulas for Hall-Littlewood Polynomials of Type B and C

Abstract

In previous work we showed that two apparently unrelated formulas for the Hall-Littlewood polynomials of type A are, in fact, closely related. The first is the tableau formula obtained by specializing q=0 in the Haglund-Haiman-Loehr formula for Macdonald polynomials. The second is the type $A$ instance of Schwer's formula (rephrased and rederived by Ram) for Hall-Littlewood polynomials of arbitrary finite type; Schwer's formula is in terms of so-called alcove walks, which originate in the work of Gaussent-Littelmann and of the author with Postnikov on discrete counterparts to the Littelmann path model. We showed that the tableau formula follows by "compressing" Ram's version of Schwer's formula. In this paper, we derive tableau formulas for the Hall-Littlewood polynomials of type B and C by compressing the corresponding instances of Schwer's formula.

Related Organizations
Keywords

FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Representation Theory (math.RT), 05E05, 33D52, Mathematics - Representation Theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average