
arXiv: 0904.2407
In previous work we showed that two apparently unrelated formulas for the Hall-Littlewood polynomials of type A are, in fact, closely related. The first is the tableau formula obtained by specializing q=0 in the Haglund-Haiman-Loehr formula for Macdonald polynomials. The second is the type $A$ instance of Schwer's formula (rephrased and rederived by Ram) for Hall-Littlewood polynomials of arbitrary finite type; Schwer's formula is in terms of so-called alcove walks, which originate in the work of Gaussent-Littelmann and of the author with Postnikov on discrete counterparts to the Littelmann path model. We showed that the tableau formula follows by "compressing" Ram's version of Schwer's formula. In this paper, we derive tableau formulas for the Hall-Littlewood polynomials of type B and C by compressing the corresponding instances of Schwer's formula.
FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Representation Theory (math.RT), 05E05, 33D52, Mathematics - Representation Theory
FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Representation Theory (math.RT), 05E05, 33D52, Mathematics - Representation Theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
