Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Industria...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Industrial Microbiology and Biotechnology
Article . 2013 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Construction of lactose-consuming Saccharomyces cerevisiae for lactose fermentation into ethanol fuel

Authors: Jing, Zou; Xuewu, Guo; Tong, Shen; Jian, Dong; Cuiying, Zhang; Dongguang, Xiao;

Construction of lactose-consuming Saccharomyces cerevisiae for lactose fermentation into ethanol fuel

Abstract

Abstract Two lactose-consuming diploid Saccharomyces cerevisiae strains, AY-51024A and AY-51024M, were constructed by expressing the LAC4 and LAC12 genes of Kluyveromyces marxianus in the host strain AY-5. In AY-51024A, both genes were targeted to the ATH1 and NTH1 gene-encoding regions to abolish the activity of acid/neutral trehalase. In AY-51024M, both genes were respectively integrated into the MIG1 and NTH1 gene-encoding regions to relieve glucose repression. Physiologic studies of the two transformants under anaerobic cultivations in glucose and galactose media indicated that the expression of both LAC genes did not physiologically burden the cells, except for AY-51024A in glucose medium. Galactose consumption was initiated at higher glucose concentrations in the MIG1 deletion strain AY-51024M than in the corresponding wild-type strain and AY-51024A, wherein galactose was consumed until glucose was completely depleted in the mixture. In lactose medium, the Sp. growth rates of AY-51024A and AY-51024M under anaerobic shake-flasks were 0.025 and 0.067 h−1, respectively. The specific lactose uptake rate and ethanol production of AY-51024M were 2.50 g lactose g CDW−1 h−1 and 23.4 g l−1, respectively, whereas those of AY-51024A were 0.98 g lactose g CDW−1 h−1 and 24.3 g lactose g CDW−1 h−1, respectively. In concentrated cheese whey powder solutions, AY-51024M produced 63.3 g l−1 ethanol from approximately 150 g l−1 initial lactose in 120 h, conversely, AY-51024A consumed 63.7 % of the initial lactose and produced 35.9 g l−1 ethanol. Therefore, relieving glucose repression is an effective strategy for constructing lactose-consuming S. cerevisiae.

Related Organizations
Keywords

Ethanol, Galactose, Trehalose, Lactose, Saccharomyces cerevisiae, beta-Galactosidase, Kluyveromyces, Glucose, Cheese, Fermentation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
Published in a Diamond OA journal