Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital Repository o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advanced Materials
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

Single‐Crystal SnSe Thermoelectric Fibers via Laser‐Induced Directional Crystallization: From 1D Fibers to Multidimensional Fabrics

Authors: Jing Zhang; Ting Zhang; Hang Zhang; Zhixun Wang; Chen Li; Zhe Wang; Kaiwei Li; +7 Authors

Single‐Crystal SnSe Thermoelectric Fibers via Laser‐Induced Directional Crystallization: From 1D Fibers to Multidimensional Fabrics

Abstract

AbstractSingle‐crystal tin selenide (SnSe), a record holder of high‐performance thermoelectric materials, enables high‐efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices. Here, a method is demonstrated to achieve ultralong single‐crystal SnSe wire with rock‐salt structure and high thermoelectric performance with diameters from micro‐ to nanoscale. This method starts from thermally drawing SnSe into a flexible fiber‐like substrate, which is polycrystalline, highly flexible, ultralong, and mechanically stable. Then a CO2 laser is employed to recrystallize the SnSe core to single‐crystal over the entire fiber. Both theoretical and experimental studies demonstrate that the single‐crystal rock‐salt SnSe fibers possess high thermoelectric properties, significantly enhancing the ZT value to 2 at 862 K. This simple and low‐cost approach offers a promising path to engage the fiber‐shaped single‐crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics.

Country
Singapore
Keywords

:Materials::Functional materials [Engineering], Flexible Fibers, High Thermoelectric Properties

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 1%
Top 10%
Top 1%
Green