
pmid: 32715534
AbstractSingle‐crystal tin selenide (SnSe), a record holder of high‐performance thermoelectric materials, enables high‐efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices. Here, a method is demonstrated to achieve ultralong single‐crystal SnSe wire with rock‐salt structure and high thermoelectric performance with diameters from micro‐ to nanoscale. This method starts from thermally drawing SnSe into a flexible fiber‐like substrate, which is polycrystalline, highly flexible, ultralong, and mechanically stable. Then a CO2 laser is employed to recrystallize the SnSe core to single‐crystal over the entire fiber. Both theoretical and experimental studies demonstrate that the single‐crystal rock‐salt SnSe fibers possess high thermoelectric properties, significantly enhancing the ZT value to 2 at 862 K. This simple and low‐cost approach offers a promising path to engage the fiber‐shaped single‐crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics.
:Materials::Functional materials [Engineering], Flexible Fibers, High Thermoelectric Properties
:Materials::Functional materials [Engineering], Flexible Fibers, High Thermoelectric Properties
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 89 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
