Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrinologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrinology
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-Inserm
Article . 2008
Data sources: HAL-Inserm
Endocrinology
Article . 2008 . Peer-reviewed
Data sources: Crossref
Endocrinology
Article . 2009
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulator of G Protein Signaling-4 Controls Fatty Acid and Glucose Homeostasis

Authors: Claude Colomer; Jean-François Brunet; Nicolas Grillet; Nicolas Grillet; Nathalie C. Guérineau; Irena Iankova; Carine Chavey; +3 Authors

Regulator of G Protein Signaling-4 Controls Fatty Acid and Glucose Homeostasis

Abstract

Circulating free fatty acids are a reflection of the balance between lipogenesis and lipolysis that takes place mainly in adipose tissue. We found that mice deficient for regulator of G protein signaling (RGS)-4 have increased circulating catecholamines, and increased free fatty acids. Consequently, RGS4−/− mice have increased concentration of circulating free fatty acids; abnormally accumulate fatty acids in liver, resulting in liver steatosis; and show a higher degree of glucose intolerance and decreased insulin secretion in pancreas. We show in this study that RGS4 controls adipose tissue lipolysis through regulation of the secretion of catecholamines by adrenal glands. RGS4 controls the balance between adipose tissue lipolysis and lipogenesis, secondary to its role in the regulation of catecholamine secretion by adrenal glands. RGS4 therefore could be a good target for the treatment of metabolic diseases.

Keywords

insulin secretion, Lipolysis, RGS4, liver steatosis, Mice, 3T3-L1 Cells, Hyperinsulinism, Insulin Secretion, Animals, Homeostasis, Insulin, Cells, Cultured, [SDV.MHEP.EM] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism, Mice, Knockout, Lipogenesis, Fatty Acids, Fasting, Fatty Liver, Glucose, Adipose Tissue, Hyperglycemia, lipolysis, Diet, Atherogenic, catecholamines, RGS Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
Green
bronze