Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Harmful Algaearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Harmful Algae
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

HY-1C ultraviolet imager captures algae blooms floating on water surface

Authors: Ziyi, Suo; Yingcheng, Lu; Jianqiang, Liu; Jing, Ding; Qianguo, Xing; Dayi, Yin; Feifei, Xu; +1 Authors

HY-1C ultraviolet imager captures algae blooms floating on water surface

Abstract

Some species of algae such as cyanobacteria can vertically migrate through water during a day, which is a notable floating feature of harmful algae blooms. To date, this process has been observed and quantified using visible and near-infrared (VNIR) bands from spaceborne sensors with high temporal resolution (i.e., Geostationary Ocean Color Imager; GOCI). In this study, we conducted an in-situ measurement at Taihu Lake in China to investigate the ultraviolet (UV) reflection spectra of floating cyanobacteria blooms, and identified that they have significant UV reflection features (higher than that of background water) associated with their floating status. This has been demonstrated using spaceborne UV images at both 355 and 385 nm from the Ultraviolet Imager (UVI) onboard Haiyang-1C (HY-1C) of China. Compared with synchronous optical images from the Chinese Ocean Color and Temperature Scanner (COCTS), we found that UVI has a special ability to distinguish cyanobacteria floating on water surface. Additionally, the intensity of the UV signals obtained is positively correlated with the cyanobacterial equivalent density. Ultraviolet remote sensing, therefore, can work as a new approach for the detection of harmful algae blooms and help determine the floating status of them, which deserves further research.

Related Organizations
Keywords

Lakes, Ultraviolet Rays, Harmful Algal Bloom, Water, Cyanobacteria, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!