
arXiv: 1905.10319
Berenshtein and Zelevinskii provided an exhaustive list of pairs of weights $(\lambda,\mu)$ of simple Lie algebras $\mathfrak{g}$ (up to Dynkin diagram isomorphism) for which the multiplicity of the weight $\mu$ in the representation of $\mathfrak{g}$ with highest weight $\lambda$ is equal to one. Using Kostant's weight multiplicity formula we describe and enumerate the contributing terms to the multiplicity for subsets of these pairs of weights and show that, in these cases, the cardinality of these contributing sets is enumerated by (multiples of) Fibonacci numbers. We conclude by using these results to compute the associated $q$-multiplicity for the pairs of weights considered, and conjecture that in all cases the $q$-multiplicity of such pairs of weights is given by a power of $q$.
complex semisimple Lie algebra, primitive pair, Combinatorial aspects of representation theory, FOS: Mathematics, multiplicity, Mathematics - Combinatorics, weight, Combinatorics (math.CO), irreducible representation, 05E10
complex semisimple Lie algebra, primitive pair, Combinatorial aspects of representation theory, FOS: Mathematics, multiplicity, Mathematics - Combinatorics, weight, Combinatorics (math.CO), irreducible representation, 05E10
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
