<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10138/335159
In order to apply satellite data to guiding navigation in the Arctic more effectively, the sea ice concentrations (SIC) derived from passive microwave (PM) products were compared with ship-based visual observations (OBS) collected during the Chinese National Arctic Research Expeditions (CHINARE). A total of 3 667 observations were collected in the Arctic summers of 2010, 2012, 2014, 2016, and 2018. PM SIC were derived from the NASA-Team (NT), Bootstrap (BT) and Climate Data Record (CDR) algorithms based on the SSMIS sensor, as well as the BT, enhanced NASA-Team (NT2) and ARTIST Sea Ice (ASI) algorithms based on AMSR-E/AMSR-2 sensors. The daily arithmetic average of PM SIC values and the daily weighted average of OBS SIC values were used for the comparisons. The correlation coefficients (CC), biases and root mean square deviations (RMSD) between PM SIC and OBS SIC were compared in terms of the overall trend, and under mild/normal/severe ice conditions. Using the OBS data, the influences of floe size and ice thickness on the SIC retrieval of different PM products were evaluated by calculating the daily weighted average of floe size code and ice thickness. Our results show that CC values range from 0.89 (AMSR-E/AMSR-2 NT2) to 0.95 (SSMIS NT), biases range from −3.96% (SSMIS NT) to 12.05% (AMSR-E/AMSR-2 NT2), and RMSD values range from 10.81% (SSMIS NT) to 20.15% (AMSR-E/AMSR-2 NT2). Floe size has a significant influence on the SIC retrievals of the PM products, and most of the PM products tend to underestimate SIC under smaller floe size conditions and overestimate SIC under larger floe size conditions. Ice thickness thicker than 30 cm does not have a significant influence on the SIC retrieval of PM products. Overall, the best (worst) agreement occurs between OBS SIC and SSMIS NT (AMSR-E/AMSR-2 NT2) SIC in the Arctic summer.
summer, Arctic navigation, IN-SITU, RETRIEVAL, ALGORITHMS, AMPLIFICATION, passive microwave remote sensing, AMSR-E, CLIMATE, Physical sciences, Environmental sciences, ship-based visual observations, SSM/I, sea ice concentration, AERIAL, SCANNING RADIOMETER, SATELLITE
summer, Arctic navigation, IN-SITU, RETRIEVAL, ALGORITHMS, AMPLIFICATION, passive microwave remote sensing, AMSR-E, CLIMATE, Physical sciences, Environmental sciences, ship-based visual observations, SSM/I, sea ice concentration, AERIAL, SCANNING RADIOMETER, SATELLITE
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |