Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Using Synchrotron-Based FTIR Microspectroscopy To Reveal Chemical Features of Feather Protein Secondary Structure: Comparison with Other Feed Protein Sources

Authors: David A. Christensen; Colleen R. Christensen; John J McKinnon; Peiqiang Yu;

Using Synchrotron-Based FTIR Microspectroscopy To Reveal Chemical Features of Feather Protein Secondary Structure: Comparison with Other Feed Protein Sources

Abstract

Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein. An understanding of the structure of the whole protein is often vital to understanding its digestive behavior in animals and nutritive quality. Usually protein secondary structures include alpha-helix and beta-sheet. The percentages of these two structures in protein secondary structures may influence feed protein quality and digestive behavior. Feathers are widely available as a potential protein supplement. They are very high in protein (84%), but the digestibility of the protein is very low (5%). The objective of this study was to use synchrotron-based Fourier transform infrared (FTIR) microspectroscopy to reveal chemical features of feather protein secondary structure within amide I at ultraspatial resolution (pixel size = 10 x 10 microm), in comparison with other protein sources from easily digested feeds such as barley, oat, and wheat tissue at endosperm regions (without destruction of their inherent structure). This experiment was performed at beamline U2B of the Albert Einstein Center for Synchrotron Biosciences at the National Synchrotron Light Source (NSLS) in Brookhaven National Laboratory (BNL), U.S. Dept of Energy (NSLS-BNL, Upton, NY). The results showed that ultraspatially resolved chemical imaging of feed protein secondary structure in terms of beta-sheet to alpha-helix peak height ratio by stepping in pixel-sized increments was obtained. Using synchrotron FTIR microspectroscopy can distinguish structures of protein amide I among the different feed protein sources. The results show that the secondary structure of feather protein differed from those of other feed protein sources in terms of the line-shape and position of amide I. The feather protein amide I peaked at approximately 1630 cm(-1). However, other feed protein sources showed a peak at approximately 1650 cm(-1). By using multicomponent peak modeling, the relatively quantitative amounts of alpha-helix and beta-sheet in protein secondary structure were obtained, which showed that feather contains 88% beta-sheet and 4% alpha-helix, barley contains 17% beta-sheet and 71% alpha-helix, oat contains 2% beta-sheet and 92% alpha-helix, and wheat contains 42% beta-sheet and 50% alpha-helix. The difference in percentage of protein secondary structure may be part of the reason for different feed protein digestive behaviors. These results demonstrate the potential of highly spatially resolved infrared microspectroscopy to reveal feed protein secondary structure. Information from this study by the infrared probing of feed protein secondary structure may be valuable as a guide for feed breeders to improve and maintain protein quality for animal use.

Related Organizations
Keywords

Proteins, Feathers, Amides, Animal Feed, Protein Structure, Secondary, Spectroscopy, Fourier Transform Infrared, Animals, Digestion, Synchrotrons

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!