
doi: 10.3390/fi14080232
SCADA systems monitor critical industrial, energy and other physical infrastructures in order to detect malfunctions, issue alerts and, in many cases, propose or even take remedial actions. However, due to their attachment to the Internet, SCADA systems are, today, vulnerable to attacks such as, among several others, interception of data traffic, malicious modifications of settings and control operations data, malicious modification of measurements and infrastructure data and Denial-of-Service attacks. Our research focuses on strengthening SCADA systems with cryptographic methods and protection mechanisms with emphasis on data and messaging encryption and device identification and authentication. The limited availability of computing power and memory in sensors and embedded devices deployed in SCADA systems make render cryptographic methods with higher resource requirements, such as the use of conventional public key cryptography such as RSA, unsuitable. We, thus, propose Elliptic Curve Cryptography as an alternative cryptographic mechanism, where smaller key sizes are required, with lower resource requirements for cryptographic operations. Accordingly, our approach integrates Modbus, a commonly used SCADA communication protocol, with Elliptic Curve Cryptography. We have, also, developed an experimental set-up in order to demonstrate the performance of our approach and draw conclusions regarding its effectiveness in real SCADA installations.
ICT security, Elliptic Curve Cryptography, Modbus protocol, TCP/IP protocol, SCADA, Information technology, T58.5-58.64, Elliptic Curve Cryptography; SCADA; Modbus protocol; ICT security; TCP/IP protocol
ICT security, Elliptic Curve Cryptography, Modbus protocol, TCP/IP protocol, SCADA, Information technology, T58.5-58.64, Elliptic Curve Cryptography; SCADA; Modbus protocol; ICT security; TCP/IP protocol
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
