
arXiv: 2009.01328
To evaluate clustering results is a significant part of cluster analysis. There are no true class labels for clustering in typical unsupervised learning. Thus, a number of internal evaluations, which use predicted labels and data, have been created. They are also named internal cluster validity indices (CVIs). Without true labels, to design an effective CVI is not simple because it is similar to create a clustering method. And, to have more CVIs is crucial because there is no universal CVI that can be used to measure all datasets, and no specific method for selecting a proper CVI for clusters without true labels. Therefore, to apply more CVIs to evaluate clustering results is necessary. In this paper, we propose a novel CVI - called Distance-based Separability Index (DSI), based on a data separability measure. We applied the DSI and eight other internal CVIs including early studies from Dunn (1974) to most recent studies CVDD (2019) as comparison. We used an external CVI as ground truth for clustering results of five clustering algorithms on 12 real and 97 synthetic datasets. Results show DSI is an effective, unique, and competitive CVI to other compared CVIs. In addition, we summarized the general process to evaluate CVIs and created a new method - rank difference - to compare the results of CVIs.
8 pages, 4 figures. Accepted by IEEE ICTAI 2020 (Long Paper & Oral Presentation)
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Machine Learning (stat.ML), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Machine Learning (stat.ML), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
