Downloads provided by UsageCounts
Robin's criterion states that the Riemann hypothesis is true if and only if the inequality $\sigma(n) 5040$, where $\sigma(n)$ is the sum-of-divisors function of $n$ and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. In 2022, Vega stated that the possible existence of the smallest counterexample $n > 5040$ of the Robin inequality implies that $q_{m} > e^{31.018189471}$ and $(\log n)^{\beta} < 1.03352795481\times\log(N_{m})$, where $N_{m} = \prod_{i = 1}^{m} q_{i}$ is the primorial number of order $m$, $q_{m}$ is the largest prime divisor of $n$ and $\beta = \prod_{i = 1}^{m} \frac{q_{i}^{a_{i}+1}}{q_{i}^{a_{i}+1}-1}$ when $n$ must be an Hardy-Ramanujan integer of the form $\prod_{i=1}^{m} q_{i}^{a_{i}}$. Based on that result, we obtain a contradiction just assuming the existence of such possible smallest counterexample $n > 5040$ for the Robin inequality. By contraposition, we show that the Riemann hypothesis should be true.
Counterexample, Prime numbers, Sum-of-divisors function, Riemann hypothesis, Robin inequality
Counterexample, Prime numbers, Sum-of-divisors function, Riemann hypothesis, Robin inequality
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 5 | |
| downloads | 13 |

Views provided by UsageCounts
Downloads provided by UsageCounts