Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the American Statistical Association
Article . 2018 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

Information-Based Optimal Subdata Selection for Big Data Linear Regression

Authors: Wang, HaiYing; Yang, Min; Stufken, John;

Information-Based Optimal Subdata Selection for Big Data Linear Regression

Abstract

Extraordinary amounts of data are being produced in many branches of science. Proven statistical methods are no longer applicable with extraordinary large data sets due to computational limitations. A critical step in big data analysis is data reduction. Existing investigations in the context of linear regression focus on subsampling-based methods. However, not only is this approach prone to sampling errors, it also leads to a covariance matrix of the estimators that is typically bounded from below by a term that is of the order of the inverse of the subdata size. We propose a novel approach, termed information-based optimal subdata selection (IBOSS). Compared to leading existing subdata methods, the IBOSS approach has the following advantages: (i) it is significantly faster; (ii) it is suitable for distributed parallel computing; (iii) the variances of the slope parameter estimators converge to 0 as the full data size increases even if the subdata size is fixed, i.e., the convergence rate depends on the full data size; (iv) data analysis for IBOSS subdata is straightforward and the sampling distribution of an IBOSS estimator is easy to assess. Theoretical results and extensive simulations demonstrate that the IBOSS approach is superior to subsampling-based methods, sometimes by orders of magnitude. The advantages of the new approach are also illustrated through analysis of real data.

56 pages, 18 figures

Related Organizations
Keywords

Methodology (stat.ME), FOS: Computer and information sciences, Statistics - Methodology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    172
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
172
Top 1%
Top 1%
Top 1%
Green
bronze