Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Study of the Efficiency of Hybrid Energy Systems with Renewable Generation: Dynamics of Energy Production in Summer and Winter Periods

Authors: O. V. Marchenko; S. V. Solomin; A.N. Kozlov;

Study of the Efficiency of Hybrid Energy Systems with Renewable Generation: Dynamics of Energy Production in Summer and Winter Periods

Abstract

In this paper, the methods of mathematical modeling are used to investigate an autonomous hybrid energy system with renewable generation. The aim of the study is to determine energy system optimal structure and its economic efficiency. The energy system contains photovoltaic modules, solar collectors for the solar heating system, storage batteries, a diesel power plant, a pellet-fueled boiler house, a biomass gasification mini-CHP operating on wood chips. A biomass gasification mini-CHP is used to cover the solar energy sources generation deficit, as well as to effectively replace expensive diesel generators. The paper considers two variants of mini-CHPs, differing in the cost of the gasifier. The mathematical model REM-2 (Renewable Energy Model) applied for calculations does not require an analysis of the structure options and the preliminary specification of the algorithm for switching energy flows between energy sources, consumers, and the battery. Optimal operating conditions are determined on the basis of GAMS (General Algebraic Modeling System) algorithms, taking into account the random nature of solar energy and the variability of energy consumption. The optimal structure of the system (installed capacity of energy sources and battery capacity) is determined, dynamics of energy production in summer and winter periods is investigated. Mathematical modeling that accounts for seasonal factors has demonstrated the efficiency of the joint use of solar energy and wood biomass.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!