
Let M M be a ternary matroid, t ( M , x , y ) t\left ( {M,x,y} \right ) be its Tutte polynomial and d ( M ) d\left ( M \right ) be the dimension of the bicycle space of any representation of M M over GF ( 3 ) {\text {GF}}\left ( 3 \right ) . We show that, for j = e 2 i π / 3 j = {e^{2i\pi /3}} , the modulus of the complex number t ( M , j , j 2 ) t\left ( {M,j,{j^2}} \right ) is equal to ( 3 ) d ( M ) {\left ( {\sqrt 3 } \right )^{d\left ( M \right )}} . The proof relies on the study of the weight enumerator W C ( y ) {W_\mathcal {C}}\left ( y \right ) of the cycle space C \mathcal {C} of a representation of M M over GF ( 3 ) {\text {GF}}\left ( 3 \right ) evaluated at y = j y = j . The main tool is the concept of principal quadripartition of C \mathcal {C} which allows a precise analysis of the evolution of the relevant invariants under deletion and contraction of elements. Soit M M un matroïde ternaire, t ( M , x , y ) t\left ( {M,x,y} \right ) son polynôme de Tutte et d ( M ) d\left ( M \right ) la dimension de l’espace des bicycles d’une représentation quelconque de M M sur GF ( 3 ) {\text {GF}}\left ( 3 \right ) . Nous montrons que, pour j = e 2 i π / 3 j = {e^{2i\pi /3}} , le module du nombre complexe t ( M , j , j 2 ) t\left ( {M,j,{j^2}} \right ) est égal à ( 3 ) d ( M ) {\left ( {\sqrt 3 } \right )^{d\left ( M \right )}} . La preuve s’appuie sur l’étude de l’énumérateur de poids W C ( y ) {W_\mathcal {C}}\left ( y \right ) de l’espace des cycles C \mathcal {C} d’une représentation de M M sur GF ( 3 ) {\text {GF}}\left ( 3 \right ) pour la valeur y = j y = j . L’outil essentiel est le concept de quadripartition principale de C \mathcal {C} qui permet une analyse précise de l’évolution des invariants concernés relativement à la suppression ou contraction d’éléments.
ternary matroid, Tutte polynomial, principal quadripartition, Exact enumeration problems, generating functions, Combinatorial aspects of matroids and geometric lattices
ternary matroid, Tutte polynomial, principal quadripartition, Exact enumeration problems, generating functions, Combinatorial aspects of matroids and geometric lattices
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
