
Lorenz-like attractors are known to appear in unfoldings from certain codimension two homoclinic bifurcations for differential equations in 3 that possess a reflectional symmetry. This includes homoclinic loops under a resonance condition and the inclination-flip homoclinic loops. We show that Lorenz-like attractors also appear in the third possible codimension two homoclinic bifurcation (for homoclinic loops to equilibria with real different eigenvalues); the orbit-flip homoclinic bifurcation. We moreover provide a bifurcation analysis computing the bifurcation curves of bifurcations from periodic orbits and discussing the creation and destruction of the Lorenz-like attractors. Known results for the inclination flip are extended to include a bifurcation analysis.
SDG 6 - Clean Water and Sanitation, 510
SDG 6 - Clean Water and Sanitation, 510
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
