Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Implementing jalapeño in Java

Authors: Bowen Alpern; C. R. Attanasio; Anthony Cocchi; Derek Lieber; Stephen Smith; Ton Ngo; John J. Barton; +3 Authors

Implementing jalapeño in Java

Abstract

Jalapeño is a virtual machine for Java™ servers written in Java. A running Java program involves four layers of functionality: the user code, the virtual-machine, the operating system, and the hardware. By drawing the Java / non-Java boundary below the virtual machine rather than above it, Jalapeño reduces the boundary-crossing overhead and opens up more opportunities for optimization. To get Jalapeño started, a boot image of a working Jalapeño virtual machine is concocted and written to a file. Later, this file can be loaded into memory and executed. Because the boot image consists entirely of Java objects, it can be concocted by a Java program that runs in any JVM. This program uses reflection to convert the boot image into Jalapeño's object format. A special MAGIC class allows unsafe casts and direct access to the hardware. Methods of this class are recognized by Jalapeño's three compilers, which ignore their bytecodes and emit special-purpose machine code. User code will not be allowed to call MAGIC methods so Java's integrity is preserved. A small non-Java program is used to start up a boot image and as an interface to the operating system. Java's programming features — object orientation, type safety, automatic memory management — greatly facilitated development of Jalapeño. However, we also discovered some of the language's limitations.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    147
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
147
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!