
handle: 11583/2971405
Energy and throughput efficient acceleration of convolutional neural networks (CNN) on devices with a strict power budget is achieved by leveraging different scheduling techniques to minimize data movement and maximize data reuse. Several dataflow mapping frameworks have been developed to explore the optimal scheduling of CNN layers on reconfigurable accelerators. However, previous works usually optimize each layer singularly, without leveraging the data reuse between the layers of CNNs. In this work, we present an analytical model to achieve efficient data reuse by searching for efficient scheduling of communication and computation across layers. We call this inter-layer scheduling framework HW-Flow-Fusion, as we explore the fused map-space of multiple layers sharing the available resources of the same accelerator, investigating the constraints and trade-offs of mapping the execution of multiple workloads with data dependencies. We propose a memory-efficient data reuse model, tiling, and resource partitioning strategies to fuse multiple layers without recomputation. Compared to standard single-layer scheduling, inter-layer scheduling can reduce the communication volume by 51% and 53% for selected VGG16-E and ResNet18 layers on a spatial array accelerator, and reduce the latency by 39% and 34% respectively, while also increasing the computation to communication ratio which improves the memory bandwidth efficiency.
Article ; DNN ; layer-fusion ; scheduling ; accelerator ; dataflow ; memory hierarchy, DNN; layer-fusion; scheduling; accelerator; dataflow; memory hierarchy, ddc: ddc:
Article ; DNN ; layer-fusion ; scheduling ; accelerator ; dataflow ; memory hierarchy, DNN; layer-fusion; scheduling; accelerator; dataflow; memory hierarchy, ddc: ddc:
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
