
doi: 10.3390/math9040350
Recently Panda et al. obtained some identities for the reciprocal sums of balancing and Lucas-balancing numbers. In this paper, we derive general identities related to reciprocal sums of products of two balancing numbers, products of two Lucas-balancing numbers and products of balancing and Lucas-balancing numbers. The method of this paper can also be applied to even-indexed and odd-indexed Fibonacci, Lucas, Pell and Pell–Lucas numbers.
QA1-939, balancing numbers, reciprocal, Fibonacci numbers, floor function, Lucas-balancing numbers, Mathematics
QA1-939, balancing numbers, reciprocal, Fibonacci numbers, floor function, Lucas-balancing numbers, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
