Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACM Transactions on ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Operating Energy-Neutral Real-Time Systems

Authors: Peter Wägemann; Tobias Distler; Heiko Janker; Phillip Raffeck; Volkmar Sieh; Wolfgang SchröDer-Preikschat;

Operating Energy-Neutral Real-Time Systems

Abstract

Energy-neutral real-time systems harvest the entire energy they use from their environment. In such systems, energy must be treated as an equally important resource as time, which creates the need to solve a number of problems that so far have not been addressed by traditional real-time systems. In particular, this includes the scheduling of tasks with both time and energy constraints, the monitoring of energy budgets, as well as the survival of blackout periods during which not enough energy is available to keep the system fully operational. In this article, we address these issues presenting E n OS, an operating-system kernel for energy-neutral real-time systems. E n OS considers mixed time criticality levels for different energy criticality modes, which enables a decoupling of time and energy constraints when one is considered less critical than the other. When switching the energy criticality mode, the system also changes the set of executed tasks and is therefore able to dynamically adapt its energy consumption depending on external conditions. By keeping track of the energy budget available, E n OS ensures that in case of a blackout the system state is safely stored to persistent memory, allowing operations to resume at a later point when enough energy is harvested again.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!