Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PURE Aarhus Universi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MOTION – A Framework for Mixed-Protocol Multi-Party Computation

Authors: Braun, Lennart; Demmler, Daniel; Schneider, Thomas; Tkachenko, Oleksandr;

MOTION – A Framework for Mixed-Protocol Multi-Party Computation

Abstract

We present MOTION, an efficient and generic open-source framework for mixed-protocol secure multi-party computation (MPC) . MOTION is built in a user-friendly, modular, and extensible way, intended to be used as a tool in MPC research and to increase adoption of MPC protocols in practice. Our framework incorporates several important engineering decisions such as full communication serialization, which enables MPC over arbitrary messaging interfaces and removes the need of owning network sockets. MOTION also incorporates several performance optimizations that improve the communication complexity and latency, e.g., \( 2\times \) better online round complexity of precomputed correlated Oblivious Transfer (OT) . We instantiate our framework with protocols for N parties and security against up to \( N-1 \) passive corruptions: the MPC protocols of Goldreich-Micali-Wigderson (GMW) in its arithmetic and Boolean version and OT-based BMR (Ben-Efraim et al., CCS’16), as well as novel and highly efficient conversions between them, including a non-interactive conversion from BMR to arithmetic GMW. MOTION is highly efficient, which we demonstrate in our experiments. Compared to secure evaluation of AES-128 with \( N=3 \) parties in a high-latency network with OT-based BMR, we achieve a 16 \( \times \) better throughput of 16 AES evaluations per second using BMR. With this, we show that BMR is much more competitive than previously assumed. For \( N=3 \) parties and full-threshold protocols in a LAN, MOTION is \( 10\times \) – \( 18\times \) faster than the previous best passively secure implementation from the MP-SPDZ framework, and \( 190\times \) – \( 586\times \) faster than the actively secure SCALE-MAMBA framework. Finally, we show that our framework is highly efficient for privacy-preserving neural network inference.

Related Organizations
Keywords

secure multi-party computation, efficiency, outsourcing, hybrid protocols, implementation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 1%
Green