Downloads provided by UsageCounts
handle: 10261/232913 , 2117/180761
Context. Open clusters are key targets for studies of Galaxy structure and evolution, and stellar physics. Since the Gaia data release 2 (DR2), the discovery of undetected clusters has shown that previous surveys were incomplete. Aims. Our aim is to exploit the Big Data capabilities of machine learning to detect new open clusters in Gaia DR2, and to complete the open cluster sample to enable further studies of the Galactic disc. Methods. We use a machine-learning based methodology to systematically search the Galactic disc for overdensities in the astrometric space and identify the open clusters using photometric information. First, we used an unsupervised clustering algorithm, DBSCAN, to blindly search for these overdensities in Gaia DR2 (l, b, ϖ, μα*, μδ), and then we used a deep learning artificial neural network trained on colour–magnitude diagrams to identify isochrone patterns in these overdensities, and to confirm them as open clusters. Results. We find 582 new open clusters distributed along the Galactic disc in the region |b| < 20°. We detect substructure in complex regions, and identify the tidal tails of a disrupting cluster UBC 274 of ∼3 Gyr located at ∼2 kpc. Conclusions. Adapting the mentioned methodology to a Big Data environment allows us to target the search using the physical properties of open clusters instead of being driven by computational limitations. This blind search for open clusters in the Galactic disc increases the number of known open clusters by 45%.
:Informàtica::Intel·ligència artificial::Aprenentatge automàtic [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic, Data analysis, Astrometry, Surveys, Gaia DR2, Open clusters and associations, Machine learning, Aprenentatge automàtic, Mineria de dades, [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], Data mining
:Informàtica::Intel·ligència artificial::Aprenentatge automàtic [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic, Data analysis, Astrometry, Surveys, Gaia DR2, Open clusters and associations, Machine learning, Aprenentatge automàtic, Mineria de dades, [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], Data mining
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 188 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
| views | 154 | |
| downloads | 142 |

Views provided by UsageCounts
Downloads provided by UsageCounts