
handle: 11104/0320877
The contribution is motivated by the Bayesian approach to the solution of material identification problems which frequently appear in geo-engineering. We shall consider the cases with associated forward model describing flow in porous media with or without fractures as well as coupled hydro-mechanical processes. When assuming uncertainties in observed data, the use of the Bayesian inversion is natural. In comparison to deterministic methods, which lead only to a point estimate of the identified parameters, the Bayesian approach provides their probability distribution. The implementation of the Bayesian inversion is realized via Markov Chain Monte Carlo methods. The paper aims at the acceleration of the posterior sampling using a surrogate model that provides a polynomial approximation of the full forward model. The sampling procedure is based on the delayed acceptance Metropolis-Hastings (DAMH) algorithm. Therefore, for each proposed sample, the acceptance decision contains a preliminary step, which works only with an approximated posterior distribution constructed using the surrogate model. Furthermore, the approximated posterior distribution is being updated using new snapshots obtained during the sampling process. The posterior distribution updates are realized via updates of the surrogate model. The application of the described approach is shown through several model examples including flow in porous media with fractures and hydro-mechanical coupling.
delayed acceptance Metropolis-Hastings algorithm, inverse problems in hydro-mechanics, Bayesian inversion, posterior sampling, surrogate model
delayed acceptance Metropolis-Hastings algorithm, inverse problems in hydro-mechanics, Bayesian inversion, posterior sampling, surrogate model
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
