Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Symbolic ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Symbolic Logic
Article . 2021 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FIBRED ALGEBRAIC SEMANTICS FOR A VARIETY OF NON-CLASSICAL FIRST-ORDER LOGICS AND TOPOLOGICAL LOGICAL TRANSLATION

Fibred algebraic semantics for a variety of non-classical first-order logics and topological logical translation
Authors: Maruyama, Yoshihiro;

FIBRED ALGEBRAIC SEMANTICS FOR A VARIETY OF NON-CLASSICAL FIRST-ORDER LOGICS AND TOPOLOGICAL LOGICAL TRANSLATION

Abstract

AbstractLawvere hyperdoctrines give categorical algebraic semantics for intuitionistic predicate logic. Here we extend the hyperdoctrinal semantics to a broad variety of substructural predicate logics over the Typed Full Lambek Calculus, verifying their completeness with respect to the extended hyperdoctrinal semantics. This yields uniform hyperdoctrinal completeness results for numerous logics such as different types of relevant predicate logics and beyond, which are new results on their own; i.e., we give uniform categorical semantics for a broad variety of non-classical predicate logics. And we introduce an analogue of Lawvere–Tierney topology and cotopology in the hyperdoctrinal setting, which gives a unifying perspective on different logical translations, in particular allowing for a uniform treatment of Girard’s exponential translation between linear and intuitionistic logics and of Kolmogorov’s double negation translation between intuitionistic and classical logics. In the hyerdoctrinal conception, type theories are categories, logics over type theories are functors, and logical translations between them, then, are natural transformations, in particular Lawvere–Tierney topologies and cotopologies on hyperdoctrines. The view of logical translations as hyperdoctrinal Lawvere–Tierney topologies and cotopologies has not been elucidated before, and may be seen as a novel contribution of the present work. From a broader perspective, this work may be regarded as taking first steps towards interplay between algebraic and categorical logics; it is, technically, a combination of substructural (or Lambekian) algebraic logic and hyperdoctrinal (or Lawverian) categorical logic, as the hyperdoctrinal completeness theorem is shown via the integration of the Lindenbaum–Tarski algebra construction with the syntactic category construction. As such this work lays a foundation for further interactions between algebraic and categorical logics.

Related Organizations
Keywords

Substructural logics (including relevance, entailment, linear logic, Lambek calculus, BCK and BCI logics), topos theory, Lawvere-Tierney topology, categorical logic, Theories (e.g., algebraic theories), structure, and semantics, tripos theory, hyperdoctrine, Fibered categories, algebraic logic, substructural logic, Categorical logic, topoi

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!