
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
State-tracking Iterative Learning Control (ILC) yields perfect state-tracking performance at each n sample instances for systems that perform repetitive tasks, where n stands for the order of the system. By achieving perfect state-tracking, oscillatory intersample behavior often encountered in output-tracking ILC has been mitigated. However, state-tracking ILC only assures the estimated state error to converge to a significantly small value, meaning the accuracy of the state estimation takes a critical role. State estimation using a causal state observer has had an inevitable trade-off between the estimation delay and the noise sensitivity. By utilizing the non-causal operation of ILC, a non-causal state estimation can be designed. This non-causal state estimation performs beyond the trade-off of causal estimation, improving the estimation delay without compromising the noise sensitivity. The aim of this paper is to implement the non-causal state observer to state-tracking ILC, and present the improved state tracking by applying it to a second order system.
Stable Inversion, Kalman Smoothing, Iterative Learning Control, 310, State Observer
Stable Inversion, Kalman Smoothing, Iterative Learning Control, 310, State Observer
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 13 | |
downloads | 5 |