
handle: 11343/280519
This paper proposed an optimization method to minimize the building energy consumption and visual discomfort for a passive building in Shanghai, China. A total of 35 design parameters relating to building form, envelope properties, thermostat settings, and green roof configurations were considered. First, the Latin hypercube sampling method (LHSM) was used to generate a set of design samples, and the energy consumption and visual discomfort of the samples were obtained through computer simulation and calculation. Second, four machine learning prediction models, including stepwise linear regression (SLR), back-propagation neural networks (BPNN), support vector machine (SVM), and random forest (RF) models, were developed. It was found that the BPNN model performed the best, with average absolute relative errors of 3.27% and 1.25% for energy consumption and visual comfort, respectively. Third, six optimization algorithms were selected to couple with the BPNN models to find the optimal design solutions. The multi-objective ant lion optimization (MOALO) algorithm was found to be the best algorithm. Finally, optimization with different groups of design variables was conducted by using the MOALO algorithm with the associated outcomes being analyzed. Compared with the reference building, the optimal solutions helped reduce energy consumption up to 34.8% and improved visual discomfort up to 100%.
green roof, Building construction, machine learning, energy consumption, passive building, design optimization, visual comfort, TH1-9745, 620
green roof, Building construction, machine learning, energy consumption, passive building, design optimization, visual comfort, TH1-9745, 620
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 35 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
