Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Industry Applications
Article . 2010 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://doi.org/10.1109/08ias....
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Neuro-Wavelet-Based Self-Tuned Wavelet Controller for IPM Motor Drives

Authors: M. Abdesh S. K. Khan; M. A. Rahman;

A Novel Neuro-Wavelet-Based Self-Tuned Wavelet Controller for IPM Motor Drives

Abstract

This paper presents a hybrid neuro-wavelet scheme for on-line tuning of a wavelet-based multiresolution PID (MRPID) controller in real-time for precise speed control of an interior permanent magnet synchronous motor (IPMSM) drive system under system uncertainties. In the wavelet-based MRPID controller, the discrete wavelet transform (DWT) is used to decompose the error between actual and command speeds into different frequency components at various scales. The MRPID controller parameters are tuned by the wavelet neural network (WNN) to ensure optimum performance of the drive system. The proposed neuro-wavelet based MRPID controller is trained online with adaptive learning rates in the closed-loop vector control of the IPMSM drive system. The adaptive learning rates are derived using discrete Lyapunov stability theorem so that the convergence of the tracking error is guaranteed in the closed-loop system. The performances of the proposed hybrid controller are investigated in both simulation and experiments at different dynamic operating conditions. The complete vector control scheme incorporating the proposed self-tuning MRPID controller is successfully implemented in real-time using the ds1102 digital signal processor board for the laboratory 1-hp IPM motor. The superior performances of the proposed WNN-based self-tuning MRPID controller are also validated over fixed-gain controllers.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!