
Bing has proved that each $2$-sphere in $E^{3}$ can almost be mapped free of itself in the following very nice sense: Suppose that $S$ is a $2$-sphere in $E^{3}$ and $\varepsilon > 0$; then there is an $\varepsilon$-map $$f:S \rightarrow S \cup \mathrm{Int}\,S$$ such that $f(S)\cap S$ and $f^{-1}(f(S)\cap S)$ are $0$-dimensional and $$f|S - f^{-1} (S) \cap S$$ is a homeomorphism. This paper illustrates how Bing's theorem can be used advantageously as a substitute for Bing's original side approximation theorem. The following are the principal results. [start-list] *(1) A $2$-sphere $S$ is tame if it is (singularly) spanned or capped on tame sets. *(2) A $2$-sphere $S$ is tame if each of its points is an inaccessible point of a Sierpiński curve in $S$ which can be pushed by a homotopy into each complementary domain of $S$.[end-list]
Topology of general \(3\)-manifolds, 57A10, Wild embeddings
Topology of general \(3\)-manifolds, 57A10, Wild embeddings
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
