
doi: 10.4064/aa138-2-6
In analogy to ordinary q-additive functions based on q-adic expansions one may use Cantor expansions with a Cantor base Q to define (strongly) Q-additive functions. This paper deals with distribution properties of multi-dimensional sequences which are generated by such Q-additive functions. If in each component we have the same Cantor base Q, then we show that uniform distribution already implies well distribution and we provide an if and only if condition under which such sequences are uniformly distributed modulo one. For different Cantor bases in the single coordinate directions the question for uniform distribution becomes much more involved. We give a criterion which is sufficient and, in the case of strongly Q-additive functions, also necessary.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
