Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2013
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2013
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Equational Noetherian Algebras and Chain Conditions

Equationally Noetherian algebras and chain conditions
Authors: Shahryari, Mohammad;

Equational Noetherian Algebras and Chain Conditions

Abstract

In this article, we describe the relation between the properties of being equational noetherian and ascending chain condition on ideals of an arbitrary algebra. We also give a formulation of Hilbert's basis theorem for varieties of algebras and obtain a criterion to investigate it for a given variety.

8 pages

Keywords

алгебраическое множество, уравнения, Zariski topol ogy, предмногообразие, max-n group, нетерова алгебра, equationally noetherian algebra, эквициональность нетеровых алгебр, Mathematics - Algebraic Geometry, теорема Гильберта о базисе, координатная алгебра, equations, FOS: Mathematics, максимальная n-группа, свободное произведение, Noetherain algebra, free product, алгебраические структуры, Algebraic Geometry (math.AG), pre-variety, algebraic set, Hilbert’s basis theorem, coordinate algebra, радикал, Mathematics - Logic, algebraic structures, топология Зарисского, variety, radical ideal, Primary 03C99, Secondary 08A99 and 14A99, многообразие, Zariski topology, noetherain algebra, Commutative Noetherian rings and modules, Logic (math.LO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green