Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

$n$-cluster tilting subcategories from gluing systems of representation-directed algebras

Authors: Vaso, Laertis;

$n$-cluster tilting subcategories from gluing systems of representation-directed algebras

Abstract

We present a new way to construct $n$-cluster tilting subcategories of abelian categories. Our method takes as input a direct system of abelian categories $\mathcal{A}_i$ with certain subcategories and, under reasonable conditions, outputs an $n$-cluster tilting subcategory of an admissible target $\mathcal{A}$ of the direct system. We apply this general method to a direct system of module categories $\text{mod}��_i$ of representation-directed algebras $��_i$ and obtain an $n$-cluster tilting subcategory $\mathcal{M}$ of a module category $\text{mod}\mathcal{C}$ of a locally bounded Krull-Schmidt category $\mathcal{C}$. In certain cases we also construct an admissible $\mathbb{Z}$-action of $\mathcal{C}$. Using a result of Darp��-Iyama, we obtain an $n$-cluster tilting subcategory of $\text{mod}(\mathcal{C}/\mathbb{Z})$ where $\mathcal{C}/\mathbb{Z}$ is the corresponding orbit category. We show that in this case $\text{mod}(\mathcal{C}/\mathbb{Z})$ is equivalent to the module category of a finite-dimensional algebra. In this way we construct many new families of representation-finite algebras whose module categories admit $n$-cluster tilting modules.

72 pages with an index

Keywords

FOS: Mathematics, 16G20 (Primary) 16G70, 18E10 (Secondary), Representation Theory (math.RT), Mathematics - Representation Theory

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green