Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Medical Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Medical Genetics
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Medical Genetics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2008
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Medical Genetics
Article
License: Springer TDM
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Medical Genetics
Article . 2008
Data sources: DOAJ
versions View all 5 versions
addClaim

Functional analysis of the novel TBX5c.1333delC mutation resulting in an extended TBX5 protein

Authors: Böhm, Johann; Heinritz, Wolfram; Craig, Alexander; Vujic, Mihailo; Ekman-Joelsson, Britt-Marie; Kohlhase, Jürgen; Froster, Ursula G.;

Functional analysis of the novel TBX5c.1333delC mutation resulting in an extended TBX5 protein

Abstract

Abstract Background Autosomal dominant Holt-Oram syndrome (HOS) is caused by mutations in the TBX5 gene and is characterized by congenital heart and preaxial radial ray upper limb defects. Most of the TBX5 mutations found in patients with HOS cause premature truncation of the primary TBX5 transcript. TBX5 missense mutations alter the three-dimensional structure of the protein and result in failed nuclear localization or reduced binding to target DNA. In this study we present our functional analyses of the novel and unusual c.1333delC mutation found in a patient with classical HOS. Methods The functional impact of this novel mutation was assessed by investigating the intracellular localization of the resulting TBX5 protein and its ability to activate the expression of its downstream target ANF. Results The deletion of the cytosine is the first TBX5 frameshift mutation predicted to result in an elongated TBX5 protein with 74 miscoding amino acids and 62 supernumerary C-terminal amino acids. The c.1333delC mutation affects neither the nuclear localization, nor its colocalization with SALL4, but severely affects the activation of the ANF promoter. Conclusion The mutation c.1333delC does not locate within functional domains, but impairs the activation of the downstream target. This suggests that misfolding of the protein prevents its biological function.

Country
Germany
Keywords

Heart Defects, Congenital, Male, Transcriptional Activation, DNA Mutational Analysis, Mutation, Missense, QH426-470, Transfection, Genes, Reporter, Chlorocebus aethiops, Genetics, Animals, Humans, Genetics(clinical), Abnormalities, Multiple, Upper Extremity Deformities, Congenital, Promoter Regions, Genetic, Internal medicine, Sequence Deletion, RC31-1245, Child, Preschool, COS Cells, T-Box Domain Proteins, Research Article, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Average
Green
gold