Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distributed Short-Pitch Winding for Multi-Phase Pole-Phase Modulated Induction Motor Drives

Authors: B. Prathap Reddy; Sivakumar Keerthipati;

Distributed Short-Pitch Winding for Multi-Phase Pole-Phase Modulated Induction Motor Drives

Abstract

In multiphase induction motors the number of slots per pole per phase comes down due to the higher number of phases, which results the airgap MMF per phase closer to square wave. In addition, as the number of poles increases the space harmonics will increase further in Pole-phase modulated induction motor drives (PPMIM) drives. To address this issues, in this paper a distributed short pitch winding (DSPW) is proposed for PPMIM drives. In DSPW, the number of conductors per phase are distributed over three stator slots that will generate the multi-stepped MMF wave in airgap as compared to concentrated winding. Because of this, the space harmonics in the airgap as well as the harmonics in induced EMF will come down, which improves the performance of the drive. The PPMIM drive with proposed DSPW, is capable to operate in 9-phase 2-pole mode and 3-phase 6-pole mode without changing the stator winding connections. A 5hp, nine-phase PPMIM drive with the proposed DSPW is designed by using Ansys Maxwell 2-D FEM tool. The power circuit is designed in Simplorer environment (associated tool for Maxwell 2-D) for co-simulating the Maxwell model of PPMIM drive. Moreover, the torque ripple percentage of PPMIM drive for both concentrated winding as well as for distributed winding has been compared. The proposed drive will offer the wider range of speed and torques which is best suitable for traction and ship propulsion applications.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!