Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of stress onAeromonasdiversity in tambaqui (Colossoma macropomum) and lectin level change towards a bacterial challenge

Authors: Patrícia Maria Guedes Paiva; Diego Santa Clara Marques; Janete Magali de Araújo; Luana Cassandra Breitenbach Barroso Coelho; Thiago Henrique Napoleão; Elba Verônica Matoso Maciel Carvalho; Dijaci A. Ferreira;

Impact of stress onAeromonasdiversity in tambaqui (Colossoma macropomum) and lectin level change towards a bacterial challenge

Abstract

Tambaqui (Colossoma macropomum) is among the most cultivated fish species in tropical countries. Stress is the main cause of disease in fish farms. The genus Aeromonas is a common causative agent of fish diseases. This work reports the identification of Aeromonas species colonizing gills of C. macropomum submitted or not to a confinement stress. We also evaluated changes in serum levels of lectins (carbohydrate-binding proteins that are components of fish immune system) in tambaqui submitted to a challenge using two isolated Aeromonas strains. Gill tissues from stressed and unstressed fishes were used to isolate Aeromonas. Then 72 Aeromonas strains were isolated, 97% being from stressed fishes. Among these, 63 were identified at species level and 6 were classified as atypical Aeromonas strains. The most prevalent species were Aeromonas bestiarum and Aeromonas caviae and their strains were used in bacterial challenges. The lectin serum levels significantly increased after 24 h of infection with A. bestiarum; however, no significant increase was found for infection with A. caviae. In conclusion, C. macropomum gills are susceptible to colonization by different Aeromonas species, mainly at confinement stressful conditions, and serum lectins may have a role in the acute immunological response towards infection by A. bestiarum.

Keywords

Gills, Fish Diseases, Stress, Physiological, Lectins, Animals, Aeromonas, Characiformes, Gram-Negative Bacterial Infections

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?