Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.researchsquare.com...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pest Science
Article . 2022 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Resistant Cassava Cultivars Inhibit The Papaya Mealybug Paracoccus Marginatus Population Based On Their Interaction: From Physiological and Biochemical Perspectives

Authors: Qing Chen; Xiao-Qiang Liu; Xiao Liang; Ying Liu; Chun-Ling Wu; Xue-Lian Xu; Yan Wu; +4 Authors

Resistant Cassava Cultivars Inhibit The Papaya Mealybug Paracoccus Marginatus Population Based On Their Interaction: From Physiological and Biochemical Perspectives

Abstract

Abstract Dangerous Paracoccus marginatus papaya mealybugs cause considerable threats and challenges to cassava production and processing. The deployment of resistant cultivars offers effective, economical and eco-friendly management strategies for pest management. We utilized P. marginatus mortality, development and reproduction to evaluate the resistance of fifteen cassava cultivars and conducted physiological and biochemical analyses when P. marginatus was fed on two resistant cultivars (Myanmar, C1115) and three susceptible cultivars (BRA900, Bread, SC205). Significantly lower digestive (amylase, sucrase, lipase), detoxification (glutathione-S-transferase and carboxylesterase) and antioxidant, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and polyphenol oxidase (PPO), enzyme activities were observed in P. marginatus feeding on resistant cultivars compared to susceptible cultivars. For resistant cultivars, a significant reduction was found in nutritional components containing free amino acids, nitrogen, soluble sugars and the secondary metabolite malondialdehyde. Additionally, significantly higher enzymatic activity (SOD, CAT, POD and PPO) levels and secondary metabolite quantities (total phenol and tannins) were found in resistant cultivars induced by P. marginatus compared with susceptible ones. Additionally, RT-qPCR tests showed that the transcripts of ten genes involved in nutrition, secondary metabolites and antioxidant activities were consistent with their physiology and biochemistry changes. Thus, resistant cultivars prevented P. marginatus populations from suffering lower P. marginatus damage by elevating secondary metabolite contents and antioxidant activities, reducing nutrition levels and decreasing enzymatic activities. This study will be beneficial in determining the important indexes for developing standard regulations to evaluate P. marginatus-resistant cassavas, helping the development of effective strategies for pest management.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
hybrid