
Abstract. Climate warming is expected to significantly affect the runoff regime of mountainous catchments. Simple methods for calculating future glacier change in hydrological models are required in order to efficiently project economic impacts of changes in the water cycle over the next decades. Models for temporal and spatial glacier evolution need to describe the climate forcing acting on the glacier and ice flow dynamics. Flow models, however, demand considerable computation power and field data input and are moreover not applicable on the regional scale. Here, we propose a simple parameterization for calculating the change in glacier surface elevation and area, which is mass conserving and suited for hydrological modelling. The Δh-parameterization is an empirical glacier-specific function derived from observations in the past that can easily be applied to large samples of glaciers. We validate the Δh-parameterization against results of a 3-D finite-element ice flow model. In case studies the evolution of two Alpine glaciers of different size over the period 2008–2100 is investigated using regional climate scenarios. The parameterization closely reproduces the distributed ice thickness change, as well as glacier area and length predicted by the ice flow model. This indicates that for the purpose of transient runoff forecasts, future glacier geometry change can be approximated using a simple parameterization instead of complex ice flow modelling. Furthermore, we analyse alpine glacier response to 21st century climate change and consequent shifts in the runoff regime of a highly glacierized catchment using the proposed methods.
Technology, T, Environmental technology. Sanitary engineering, G, Environmental sciences, Geography. Anthropology. Recreation, GE1-350, TD1-1066
Technology, T, Environmental technology. Sanitary engineering, G, Environmental sciences, Geography. Anthropology. Recreation, GE1-350, TD1-1066
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 212 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
