Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2015 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2016
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2015
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2015
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Motor and Sensory Deficits in the teetering Mice Result from Mutation of the ESCRT Component HGS

Authors: Scott E. Phillips; Mert Icyuz; Jada H. Vaden; Scott M. Wilson; Gene P. Siegal; Richard J. Miller; Jennifer A. Watson; +7 Authors

Motor and Sensory Deficits in the teetering Mice Result from Mutation of the ESCRT Component HGS

Abstract

Neurons are particularly vulnerable to perturbations in endo-lysosomal transport, as several neurological disorders are caused by a primary deficit in this pathway. In this report, we used positional cloning to show that the spontaneously occurring neurological mutation teetering (tn) is a single nucleotide substitution in hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). The tn mice exhibit hypokenesis, muscle weakness, reduced muscle size and early perinatal lethality by 5-weeks of age. Although HGS has been suggested to be essential for the sorting of ubiquitinated membrane proteins to the lysosome, there were no alterations in receptor tyrosine kinase levels in the central nervous system, and only a modest decrease in tropomyosin receptor kinase B (TrkB) in the sciatic nerves of the tn mice. Instead, loss of HGS resulted in structural alterations at the neuromuscular junction (NMJ), including swellings and ultra-terminal sprouting at motor axon terminals and an increase in the number of endosomes and multivesicular bodies. These structural changes were accompanied by a reduction in spontaneous and evoked release of acetylcholine, indicating a deficit in neurotransmitter release at the NMJ. These deficits in synaptic transmission were associated with elevated levels of ubiquitinated proteins in the synaptosome fraction. In addition to the deficits in neuronal function, mutation of Hgs resulted in both hypermyelinated and dysmyelinated axons in the tn mice, which supports a growing body of evidence that ESCRTs are required for proper myelination of peripheral nerves. Our results indicate that HGS has multiple roles in the nervous system and demonstrate a previously unanticipated requirement for ESCRTs in the maintenance of synaptic transmission.

Keywords

Male, Molecular Sequence Data, Neuromuscular Junction, QH426-470, Motor Activity, Hippocampus, Synaptic Transmission, Genetics, Animals, Amino Acid Sequence, Myelin Sheath, Behavior, Animal, Endosomal Sorting Complexes Required for Transport, Gene Expression Regulation, Developmental, Phosphoproteins, Sciatic Nerve, Mice, Mutant Strains, Mice, Inbred C57BL, Mutation, Female, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
Green
gold