Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2010
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Points fixes des applications compactes dans les espaces ULC

Authors: Cauty, Robert;

Points fixes des applications compactes dans les espaces ULC

Abstract

A topological space is locally equiconnected if there exists a neighborhood $U$ of the diagonal in $X\times X$ and a continuous map $��:U\times[0,1]\to X$ such that $��(x,y,0)=x$, $��(x,y,1)=y$ et $��(x,x,t)=x$ for $(x,y)\in U$ and $(x,t)\in X\times[0,1]$. This class contains all ANRs, all locally contractible topological groups and the open subsets of convex subsets of linear topological spaces. In a series of papers, we extended the fixed point theory of compact continuous maps, which was well developped for ANRs, to all separeted locally equiconnected spaces. This generalization includes a proof of Schauder's conjecture for compact maps of convex sets. This paper is a survey of that work. The generalization has two steps: the metrizable case, and the passage from the metrizable case to the general case. The metrizable case is, by far, the most difficult. To treat this case, we introduced in [4] the notion of algebraic ANR. Since the proof that metrizable locally equiconnected spaces are algebraic ANRs is rather difficult, we give here a detaled sketch of it in the case of a compact convex subset of a metrizable t.v.s.. The passage from the metrizable case to the general case uses a free functor and representations of compact spaces as inverse limits of some special inverse systems of metrizable compacta.

Keywords

Mathematics - Functional Analysis, General Topology (math.GN), FOS: Mathematics, Algebraic Topology (math.AT), Mathematics - Algebraic Topology, 54C55, Mathematics - General Topology, Functional Analysis (math.FA)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green