Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Descartes
Conference object . 2021
License: CC BY
Data sources: HAL Descartes
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Probabilistic Analysis of Euclidean Capacitated Vehicle Routing

Authors: Mathieu, Claire; Zhou, Hang;

Probabilistic Analysis of Euclidean Capacitated Vehicle Routing

Abstract

We give a probabilistic analysis of the unit-demand Euclidean capacitated vehicle routing problem in the random setting, where the input distribution consists of $n$ unit-demand customers modeled as independent, identically distributed uniform random points in the two-dimensional plane. The objective is to visit every customer using a set of routes of minimum total length, such that each route visits at most $k$ customers, where $k$ is the capacity of a vehicle. All of the following results are in the random setting and hold asymptotically almost surely. The best known polynomial-time approximation for this problem is the iterated tour partitioning (ITP) algorithm, introduced in 1985 by Haimovich and Rinnooy Kan. They showed that the ITP algorithm is near-optimal when $k$ is either $o(\sqrt{n})$ or $��(\sqrt{n})$, and they asked whether the ITP algorithm was also effective in the intermediate range. In this work, we show that when $k=\sqrt{n}$, the ITP algorithm is at best a $(1+c_0)$-approximation for some positive constant $c_0$. On the other hand, the approximation ratio of the ITP algorithm was known to be at most $0.995+��$ due to Bompadre, Dror, and Orlin, where $��$ is the approximation ratio of an algorithm for the traveling salesman problem. In this work, we improve the upper bound on the approximation ratio of the ITP algorithm to $0.915+��$. Our analysis is based on a new lower bound on the optimal cost for the metric capacitated vehicle routing problem, which may be of independent interest.

Keywords

FOS: Computer and information sciences, capacitated vehicle routing, [INFO] Computer Science [cs], probabilistic analysis, 004, iterated tour partitioning, Computer Science - Data Structures and Algorithms, [INFO]Computer Science [cs], Data Structures and Algorithms (cs.DS), approximation algorithms, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green